Fuzzy Logic Adaptation of a Hybrid Evolutionary Method for Pattern Recognition
نویسندگان
چکیده
We describe in this paper a new hybrid approach for optimization combining Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs) using Fuzzy Logic to integrate the results. The new evolutionary method combines the advantages of PSO and GA to give us an improved FPSO+FGA hybrid method. Fuzzy Logic is used to combine the results of the PSO and GA in the best way possible. The new hybrid FPSO+FGA approach is compared with the PSO and GA methods with a set of benchmark mathematical functions. The proposed hybrid method is also tested with the problem of modular neural network optimization. The new hybrid FPSO+FGA method is shown to be superior with respect to both the individual evolutionary methods. Keywords— Fuzzy Logic, Evolutionary Computing, Genetic Algorithms.
منابع مشابه
Evolutionary Design of Intelligent Systems in Modeling, Simulation and Control
The editors describe in this book, new methods for evolutionary design of intelligent systems using soft computing and their applications in modeling, simulation and control. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and evolutionary algorithms, which can be used to produce powerful hybrid intelligent systems. The book is or...
متن کاملThe Effectiveness of the Automatic System of Fuzzy Logic-Based Technical Patterns Recognition: Evidence from Tehran Stock Exchange
The present research proposes an automatic system based on moving average (MA) and fuzzy logic to recognize technical analysis patterns including head and shoulder patterns, triangle patterns and broadening patterns in the Tehran Stock Exchange. The automatic system was used on 38 indicators of Tehran Stock Exchange within the period 2014-2017 in order to evaluate the effectiveness of technical...
متن کاملA NOVEL FUZZY MULTI-OBJECTIVE ENHANCED TIME EVOLUTIONARY OPTIMIZATION FOR SPACE STRUCTURES
This research presents a novel design approach to achieve an optimal structure established upon multiple objective functions by simultaneous utilization of the Enhanced Time Evolutionary Optimization method and Fuzzy Logic (FLETEO). For this purpose, at first, modeling of the structure design problem in this space is performed using fuzzy logic concepts. Thus, a new problem creates with functio...
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کامل